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The purpose of this study was to investigate how a set of physical and digital instructional activities 
can serve as an example space to help further develop a concept image that is aligned with the 
formal concept definition for the limit of a sequence. In addition, the unique affordances and 
constraints allowed by using either a physical or digital modality in understanding the convergence 
of a sequence was analyzed. Results suggest that both of these activities served to help students 
conceptualize the arbitrary nature of the error bound, and for some students it further illustrated the 
relationship between an arbitrarily small error bound, the limit value, and the index of the sequence. 
The physical activity constrained students to think of the sequence as a finite terminating set of 
numbers whereas the digital activity provided additional information that student used in subsequent 
problem solving. 
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Students’ misconceptions of limits and infinity are a well-documented and researched area in 
math education literature (e.g., Cory & Garofalo, 2011; Roh, 2008; Tall & Vinner, 1981). Students 
often have difficulty advancing from an intuitive dynamic conception of limit to the more formal 
limit conception, and often fail to understand the relationship between a given epsilon error range 
and the index of the sequence (Roh, 2010; Tall & Vinner, 1981). Students may resort to 
memorization tactics and often confuse the formal definition of the limit of a sequence with the limit 
of a function or other limit ideas. 

Roh (2010) developed instructional materials that utilize visualization to support student 
understanding of the formal definition of the limit of a sequence based on the vast amount of 
misconception literature on limits and calls for the increased role of visualization in calculus 
(Dreyfus, 1990). Using an instructional activity referred to as the epsilon-strip task, Roh was able to 
categorize and support student understanding of the logical structure between epsilon and the index 
of a sequence. Roh has also shown how students’ understanding of the definition of the limit of a 
sequence are influenced by their images of limits as asymptotes, cluster points, or true limit points 
using the same instructional activities (Roh, 2008). 

This research project was driven by the conjecture that a technologically enhanced epsilon-strip 
instructional activity would make the instructional materials more accessible and promote deeper 
engagement by the user. Research shows that technology can be utilized to help students make sense 
of calculus concepts by using multiple representations (Tall, 1994) and that when technology uses 
dynamic versus static visualizations there is an overall benefit for student learning (Hoffler & 
Leutner, 2007). In a recent study with preservice teachers, dynamic sketches for sequence 
convergence were utilized to help strengthen their understandings of formal limit ideas as they 
integrated the visual representation with the symbolic definition (Cory & Garofalo, 2011). In this 
study, I seek to address how physical and digital epsilon-strip activities relate to students’ 
understanding of limits of sequences.  Furthermore, I investigate what constraints and affordances are 
provided in using either the physical or the digital epsilon-strip activity. 

Theoretical Framework 
Tall and Vinner (1981) examined student understanding of limits and developed the constructs of 

concept image and concept definition to describe the cognitive process of learning mathematics. 
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Concept image refers to the “total cognitive structure that is associated with the concept, which 
includes all the mental pictures and associated properties and processes,” whereas the formal concept 
definition is the form of words which are accepted by the mathematical community to describe the 
concept (Tall & Vinner, 1981). Often times a student’s evoked concept image, which is the image 
generated given a certain context or prompt, may not be globally coherent and may deviate 
considerably from the formal concept definition. In the context of this study the formal concept 
definition for the limit of a sequence is referred to as the ε-N definition presented in Figure 1.  

 
Å − Ç	ÉÑMPQPÖPÜQ:	A	sequence	 aç çé5

è 	convergeges	to	ì	if, 
	for	any	ϵ > 0	there	exists	N ∈ ö	such	that	for	all	n > N, aç − ì < ú 

 
Figure 1. Definition for the limit of a sequence referred to as the ε-N definition. 

In addition to drawing on the concept image and concept definition framing, in this study I 
utilizes gesture theory from the field of embodied cognition as a means for illustrating student 
understanding through non-verbal communication. Preliminary research suggests that using dynamic 
visual environments can evoke metaphoric gestures to convey the temporal relationship in calculus 
concepts and are an essential element to effective mathematical communication (Ng, in press; Núñez, 
2004).  In this study I seek to answer the following research questions: In what ways do these 
instructional activities produce an evoked concepts image consistent with the concept definition for 
the limit of a sequence?  Are there unique affordances or constraints in using either the digital versus 
the physical instructional activity? 

Methods 
The participants in this study were three undergraduate mathematics majors recruited from a 

Vector Calculus course at a 4-year public research university. At the time of the study, each student 
had completed a sequence of single-variable calculus and a course in analytic geometry and 
multivariable calculus. Additionally, each had previously been exposed to the definition of limit of a 
sequence and the concepts of convergence and divergence. The 45-60 minute semi-structured, 
individual interviews were video recorded and interview tasks were based on a modified sequence of 
instructional activities drawn from Roh (2010). Students were told they would explore a concept in 
calculus in a non-evaluative problem solving interview and were encouraged to think aloud as much 
as possible as they worked on each of the tasks. 

In order to gain insight into each student’s initial evoked concept image for the limit of sequence 
they were asked about their prior experience with limits of sequences and how they thought about of 
the convergence of a sequence. To further explore student conceptions of convergence they were 

asked to represent the sequence	 ù

/û

D

ùé5

è

 numerically in a table and prompted to determine what 

would happen to the sequence as the index n gets larger. After assessing students reasoning and prior 
background regarding the convergence of a sequence they were presented with the following digital 
and physical epsilon-strip activities.  

The digital epsilon-strip activities were created with the design heuristic principles of 
manipulation of content and guided discovery (Plass, Homer, & Hayward, 2009). The manipulation 
of content principle asserts that student learning is improved if the learner is able to manipulate the 
content of a dynamic visualization and the guided discovery principle suggests students learn better 
when guidance is used in discovery-based learning in multimedia contexts. Using these principles I 
created digital activities using Desmos© online graphing utility as shown in Figure 2. A link to the 
resources and graphs used in this study are available at the following web address (goo.gl/Bm31eD). 
Students were given a brief tutorial explaining the onscreen graphs and the epsilon-strip. In 
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particular, they were shown how to manipulate where the epsilon-strip was centered and how to 
adjust its width through the use of sliders, which provide dynamic changes of the values, or by 
manually entering a desired value. Based on the principle of guided discovery, students were given 
an activity sheet that instructed them where to center the epsilon-strip, and had them iterate through 
three decreasing values for the width of the epsilon-strip. For each given epsilon width, students 
filled out a table where they counted the number of terms inside the epsilon-strip and the number of 
terms outside the epsilon-strip, which is referred to as the counting process. Student were then asked 
to repeat the same procedure and counting process but with the epsilon-strip centered at a different 
value. There were a total of three graphs explored, each selected to illustrate a different type of 
sequence convergence or divergence: monotonically convergent	 5

ù ùé5

è

, oscillating convergent 

	 (−.75)ù ùé5
è , and oscillating divergent	 −1 ù

ùé5
è . 

 

 
Figure 2. Digital epsilon-strip graph for monotonically convergent sequence. 

The physical activity consisted of printed graphs of a sequence and strips of rectangular 
transparencies that represented the error bounds of a limit of a sequence, as shown in Figure 3. In 
accordance with the guidelines presented in Roh (2008) the strips had a constant width and each were 
marked through the center with a red line. The same procedure and counting process as described for 
the digital activity were used with the physical activity. There were a total of three graphs explored 

with this exact process: monotonically convergent
5

ù
, = ≤ 10

. 1, = > 10
	, oscillating convergent p5 û
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, 

and oscillating divergent −1 ù 1 +
5

ù ùé5

è

.  
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Figure 3. Physical epsilon-strip activity for monotonically convergent sequence. 

After the digital and physical epsilon-strip activities, students were asked to evaluate the validity 
of two “student” generated definitions for the limit of a sequence, called ε-strip definition A and the 
ε-strip definition B: 

• ε-strip definition A:  L is a limit of a sequence when infinitely many points on the graph 
of the sequence are covered by any ε-strip as long as the ε-strip is centered a L. 

• ε-strip definition B: L is a limit of a sequence when only finitely many points on the 
graph of the sequence are NOT covered by any ε-strip as long as the ε-strip is centered a 
L. 

After evaluating these definitions students were given the formal ε-N definition and asked to 
explain each of the components of the definition and how they made sense of this definition. In the 
last part of the interview students were asked to explain how they saw the formal definition in 
relation to the ε-strip activities.  

Results 

Students’ evolving concept image 
Pedro’s (all names are pseudonyms) initial concept image for the limit of a sequence was based 

on discrete representations, pattern recognition, and procedural computations. He recalled computing 
values for the limit of a sequence in prior mathematical classes, but was unable to provide a 
definition. When he was asked about the end behavior of the sequence ù

/û

D
 he said it would depend 

on the relationship between the numerator and denominator. He stated that he would need to “plug in 
numbers and see the pattern” of values and then visualize those values to determine the limit. Pedro 
appeared to draw on a discrete representation of the sequence and pattern recognition to determine 
what the sequence was approaching as the index increased.  

 After the completion of the epsilon-strip activities Pedro was able to articulate several 
additional components related to his concept image for the limit of a sequence. He stated expressly 
the importance of where the epsilon-strip was centered, L, as crucial in determining if the sequence 
had a limit. He then linked the dependence on L with the idea that epsilon was allowed to vary and 
that for any epsilon there could only be finitely many terms outside of the strip. Although he didn’t 
formalize the directional relationship between any given epsilon and the existence of some index n, 
he did articulate a relationship between the arbitrary epsilon and the finite number of terms outside 
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the epsilon error range, and used this reasoning in rejecting ε-strip definition A. In describing the 
formal definition, he used the physical transparency showing how the sequence will be contained 
using gesture to show a motion like pattern in the strip, and then pointed to the digital epsilon-strip 
activity to show that it has to be bounded in that range. Although the activities elicited further 
components related to the limit of sequences, he was still unable to explain how definition B was 
valid, or articulate how each of the components in the formal definition related to the limit of a 
sequence.  

Nick’s initial concept image of the limit of a sequence was the most robust of all three students. 
Nick initially drew on the limit as an asymptote concept and descried convergence as “it hitting a 
particular number as the index n approaches infinity.” When computing the limit of the sequence 
ù

/û

D
, Nick used a graphing calculator to plot the sequence as a continuous function and used the 

visualization to assert that the function was converging to zero. Nick’s initial evoked concept image 
of the limit of sequence drew heavily from ideas of continuous functions and asymptotes versus the 
discrete representation conception evoked by Pedro.  

After the completion of the epsilon-strip activities Nick’s evoked concept image was similar to 
Pedro’s yet contained further refinement regarding the relationship of the index n in the formal 
definition. Nick expressed that epsilon was “arbitrarily small” and you could, “pick any one” that you 
wanted, and that the limit value L was crucial in determining if the sequence converged to that 
particular value. Nick was the only student to explain the importance of the index n after picking an 
epsilon-strip, explaining that n is important because “we can always find an n +1 such that it is inside 
our strip.” Nick first rejected both definition A and definition B, using an oscillating divergent 
sequence as a counterexample to definition A. Nick further argued that definition B was an invalid 
definition because it was possible to have a finite terminating sequence and thus there would be finite 
number inside and a finite number outside the epsilon-strip. When invited to consider an infinite 
sequence, Nick utilized the physical graphs, and then stated that definition B would be valid.  

Heng’s initial evoked concept image for the limit of a sequence included categorization and 
computational techniques. When discussing the limit of a sequence he drew on ideas of divergence as 
infinity and convergence as “related to some sort of range” of values. When computing the limit of 
the particular sequence ù

/û

D
, Heng said it would go to infinity because he used the ratio tests to 

compare the “values of #ù†5and	#ù.” However, since he only compared the first two values of the 
sequence he failed to see that the sequence increases for the first few terms and then converges to 
zero.  

During the physical epsilon-strip activity Heng viewed the oscillating convergent sequence as 
divergent since it alternated between positive and negative values. However, when working through 
the digital epsilon-strip activity he stated that the oscillating convergent sequence did converge since 
it was getting closer to the value of zero. Heng had one of the least developed concept images prior 
to the activity, and in addition expressed difficulty as an English language learner in engaging with 
the definition-provoking-activities that followed the digital and physical epsilon-strip activities. Heng 
initially asserted that definition A and B were correct, but after being asked to explain them in 
relation to the oscillating divergent sequence, he stated that A didn’t fulfill the requirement and thus 
we “need both definitions for the limit” to exist. He did articulate that the epsilon-strip in the formal 
definition was arbitrary and that for “anyone that I pick” we can bound the sequence. He did not 
express the epsilon as arbitrarily small, nor was he able to express a relationship between epsilon and 
the index n. Heng, although acknowledging that they were different, wrote out the formal delta 
epsilon definition for continuous functions to try and make sense of the ε-N definition for 
convergence.  



Technology 1530 

 

Wood, M. B., Turner, E. E., Civil, M., & Eli, J. A. (Eds.). (2016). Proceedings of the 38th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, AZ: 
The University of Arizona. 

Affordances and Constraints 
In addition to examining how the overall activities helped the development of student concept 

images related to the limit of a sequence, I analyzed the unique affordances and constraints provided 
by either using the digital or the physical modality for the epsilon-strip activity. During this study 
there were two prevalent constraints observed in using the physical modality related to the finite 
nature and imprecision of the epsilon-strips. Due to the nature of the static paper, both Pedro and 
Heng conceived of the graphs as a terminating sequence with only a finite number of terms and 
therefore had to be instructed to think of them as infinitely long. Although Nick did not evoke this 
misconception, he did use the example of a terminating sequence as a counter example to definition 
B, arguing that you could have finitely many inside and outside the strip. The imprecision of the 
epsilon-strips also lead each of the students to have questions about the ambiguity of terms lying on 
the epsilon-strip during the paper activity. This could have been a result of human cutting error 
regarding strip width uniformity or difficulties with the physical act of aligning and using strips. I 
speculate that the latter is more probable, since the strips were measured and cut using a guillotine 
style paper cutter and were observably uniform.  

The digital modality offered several unique interactions that were not observed during the 
physical epsilon activity, including students using ancillary information provided by the digital 
modality and an increase in the use of gestures. Both Heng and Nick used the ancillary information 
that was located in the graphing utility on the left hand panel to reason and complete the activities. 
Heng, when working on the digital activities, first computed the epsilon error range given the width 
and center, and then used this range of numbers to compare against the table of sequence values in 
order to determine which terms were outside and inside the strip. Heng used this information to 
correctly identify the convergence for each of the digital activities, yet he failed to do so for the 
physical oscillating convergent sequence. Although this strategy was accurate, it is still unclear how 
this may have impacted his visualization of limits as it relates to the formal definition. Nick also 
drew on the additional information and argued that since the function was programmed in as {1/n}, 
he knew from prior experience that this sequence would converge to zero. It should be noted that the 
same ancillary information could have been included in the physical graphs, but they were an 
automatic result of using the digital technology.  

Both Pedro and Nick increased their use of gestures when interacting with the digital modality 
and during the definition activity, as illustrated in Figure 4. I attended to the use of gestures in this 
study since the prior research from Roh’s studies have failed to address the role of gesture in 
mathematical learning. Moreover, using the dynamic digital modality one might expect an increase in 
the use of gestures because the visual movement parallels the movement of the gesture. Pedro 
utilized his thumb and index finger in a collapsing motion when highlighting the arbitrarily small 
nature of epsilon while using the digital modality. Nick used a similar gesture when talking about the 
arbitrary nature of epsilon but used his thumb and all of his remaining fingers to show a collapsing 
dynamic motion. While neither Nick nor Pedro explicitly stated the concept that epsilon values tend 
toward zero, their gestures indicate an understanding of this very relationship. Nick also utilized his 
left forearm and right hand in an up and down motion when discussing the importance of where the 
epsilon-strip was centered in determining the limit while interacting with the physical modality, 
suggesting that the tangible movement of the strip was more salient given the physical context. 
  



Technology 1531 

 

Wood, M. B., Turner, E. E., Civil, M., & Eli, J. A. (Eds.). (2016). Proceedings of the 38th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, AZ: 
The University of Arizona. 

 
Figure 4. Nick (Left) and Pedro (Right) using gestures during the activities. 

Conclusion 
This study was driven by a desire to take existing innovative instructional materials and utilize 

technology in a controlled setting to ascertain how they may jointly help develop students’ concepts 
images for convergence, and furthermore provide insight into the affordances and constraints in 
using the two different modalities. Both the physical and digital activities helped to illicit a more 
detailed evoked concept images regarding the limit of a sequence from all three of the participants. 
All of the students after the activity expressed the limit in relation to the arbitrary nature of the 
epsilon-strip, and two of the students conceived of epsilon as getting arbitrarily small. Students still 
had issues explaining the formal ε-N definition of the limit of a sequence, with only one student 
articulating the importance of the index n as it related to the chosen epsilon error range. Although 
students didn’t have a globally aligned concept image with the formal concept definition, each 
expressed how the nature of these activities helped them think and reason about the formal ε-N 
definition of the limit of sequence.  

In comparing the two types of modalities, it appears that the physical activity seemed to constrain 
students into thinking of the sequences presented as finite and terminating. In addition there were 
issues of ambiguity related to when a given term was located inside the epsilon-strip either because 
they were not cut uniformly or because they were not centered level to the x-axis. The digital activity 
provided students with a dynamic representation which may have resulted in the increased presence 
of gestures in describing the definitions. In addition, the ancillary information was used in unique 
ways during the counting processes in unanticipated ways, such as the formal examination of the 
table of values. Future research studies may examine each of these activities with a larger range of 
students and determine if the gestures used by students is a unique affordance of the dynamic nature 
of the digital representation of the epsilon-strip activity and address the effect of the ancillary 
information (i.e. table of values or programmed function) on students understanding. 

There is clearly more room for the examination of innovative and improved curriculum even 
though mathematics education literature abounds with research on student misconceptions of limits 
and infinity. In this study, a technologically enhanced epsilon-strip activity proved beneficial to 
promote student understanding of the limit of sequence. It provided a dynamic visualization of the 
epsilon-strip as an arbitrary small error range for a sequence that appeared to continue on ad 
infinitum. It is the hope that as these instructional materials and technology further develop, they will 
serve to broaden the example space that students draw upon in order to understand the formal 
mathematical definition of the limit of a sequence.  
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